
in PracticeScala

@patforna
patric.fornasier@springer.com

3 years later…

mailto:patric.fornasier@springer.com

Context

Context

Pat

Springer

Software

Engineer

Technical

Principal

10+ years

Academic

Publisher

Pretty Large

Springer

Link

Strategic

95 % Online

Revenue
66 % Total

Revenue

9 Mio items

2TB XML

Re-built

3 years ago

Content

Delivery

Platform

52 Mio

PageViews / Month

99.9%

Availability

Scala NoSql

Co-Sourced

Team

TW

Ex-TW

Springer
Global

CD

SpringerLink

Timeline

Start
development

Cycling
Trip

Re-joined

Product -> platform
Paying back tech debt

Today

04/11 04/12 08/13 04/14

Inception

05/12 09/12

Bookfair
Release

RD
Live

User migration,
enhancements

Link
Live

Smart
Books
Live

Enhancements

Looking back: why scala?
• Increase productivity

• Be more attractive employer

• Team decision

Looking back: good vs bad
Good

• Functional programming

• Terse syntax

• JVM ecosystem

• Gentle learning curve

• DSL friendly syntax

• Motivated team

Bad

• Tool support

• Compilation times

• Language complexity #moreRope

Fast-forward

Fast-forward (Aug 2013)

• 2.5 years into project

• 1.5 years of weekly live releases

• 100k LOC

• >10k commits

• >90 committers

not all related to Scala - to be fair

• Poor feedback loops

• Lots of accidental complexity

Trend (2 years)

LOC

~ 100k

Trend (2 years)

build time

LOC
• 1:34 min src/main

• 6:44 min src/test

• 8:18 min total

What did we do?

What did we do
• Reduced build time

• Improved feedback loops

• Reduced accidental complexity

Build time
• Reduced size of codebase (broke off vertical slices, pulled out APIs, pulled out libraries,

removed unused features, removed low-value tests, etc.)

• Reduced usage of certain language features (esp. traits and implicits)

Trend (Dec 2013)

LOC

Trend (Dec 2013)

build time

traits

LOC

unable to compile on	

13” macbook

The problem with traits
• Will re-compile on every class the trait is mixed in

• Slows down dev-build cycle

• Will result in byte code bloat

• Will compile *a lot* slower

!

For faster compile times:

• Use pure traits

• Use old-school composition for code re-use

• Use pure functions via imports (e.g. import Foo._)

• If unavoidable, use inheritance for code re-use

Build time

• 1:34 min src/main

• 6:44 min src/test

• 8:18 min total

• 0:24 min src/main

• 3:11 min src/test

• 3:35 min total

Build time (on CI server)

• Incremental compilation on CI

• Only one dedicated CI agent

• Physical build servers

• CPUs with higher clock speed

Complexity

Complexity
• There’s still a lot of code in our codebase that is hard to read

• It seems to be very easy to shoot yourself in the foot with Scala

• Scala *is* complex (and that’s why scalac will never be as fast as javac)

Invariant/covariant/contravariant types (T, +T and -T)	
Refined types (new Foo {...})	
Structural types (x: {def y: Int})	
Path dependant types (a.B)	
Specialized types (@specialized)	
Self types (this =>)	
Projection types (A#B)	
Existential types (M[_])	

Type bounds (<:, >:) 	
Type constraints (=:=, <:< and <%<)	

Type members (type T)	
Type aliases (type T = Int)	

Type classes ((implicit ...))	
View bounds (<%)	

Higher kinded types (* => *)	
F-Bounded type polymorphism (M[T <: M[T]])

http://nurkiewicz.github.io/talks/2014/scalar/#/16

http://nurkiewicz.github.io/talks/2014/scalar/#/16

Not opinionated

def foo() = "foo"	
def bar = "bar"	
!
foo	
foo()	
bar	
bar() // won't compile

list.foreach { x => println(x) }	
list.foreach (x => println(x))	
list.foreach { println(_) }	
list.foreach (println(_))	
list foreach { x => println(x) }	
list foreach (x => println(x))	
list foreach { println(_) }	
list foreach (println(_))

if (foo) "x" else "y"	
 	
foo match {	
 case true => "x"	
 case _ => "y"	
}

For example: http://twitter.github.io/effectivescala/

• Many ways to do the same thing

• Coding conventions help, but only so much

def baz(x: String) = x	
“x”.charAt(0)	
“x” charAt(0) // won't compile	
“x”.charAt 0 // won't compile	
“x” charAt 0	
baz("x")	
baz “x" // won't compile

http://twitter.github.io/effectivescala/

Surprises
List(1, 2, 3).toSet 	
scala.collection.immutable.Set[Int] = Set(1, 2, 3)	
!
List(1, 2, 3).toSet()	
Boolean = false

http://dan.bodar.com/2013/12/04/wat-scala/

http://dan.bodar.com/2013/12/04/wat-scala/

Implicits
• Can make it very hard to read code

• Tool support is very bad

• Impacts compilation time

• Surprising behaviour (esp. when used with overloaded methods or optional params)

Tooling

def handle(response: HttpResponse, request: HttpRequest)

• Tool support is still very basic

• Makes it hard to continuously refactor (which means people are less likely to do it)

no luck with “change signature”
refactoring support

Trait entanglements
• Makes it difficult to reason about behaviour

trait A {	
 def foo = "a"	
}	
!
trait B extends A {	
 override def foo = "b"	
}

class C extends A with B	
new C().foo	

"b"	
!
class D extends B with A	
new D().foo	

"b"

Trait entanglements (2)

ArticlePageSteps

WebDriverSupport

AuthorStepsCoverImageSteps

SummarySection

Waiter SectionPageSteps

CommonPageSteps

WebElementSupport

Assertions

Uris TripleEquals

OnHost TripleEqualsSupport

MachineNames

Trait entanglements (3)

ArticlePageSteps_0

WebDriverSupport_1 AuthorSteps_1 CoverImageSteps_1 SummarySection_1Waiter_1 SectionPageSteps_1 CommonPageSteps_1

CommonPageSteps_2 WebElementSupport_2Assertions_2 WebDriverSupport_2Uris_2

WebElementSupport_3 WebDriverSupport_3Uris_3 TripleEquals_3 OnHost_3

OnHost_4 TripleEqualsSupport_4 MachineNames_4

MachineNames_5

Trait entanglements (4)

ArticlePageTests_0

ArticlePageSteps_1 AboutSectionSteps_1 SearchResultsPageSteps_1 Uris_1 ArticleTestFixture_1 JavascriptSupport_1 IssuePageSteps_1 CommonAbstractSteps_1 GoogleAnalyticsSteps_1 FakeEntitlementSteps_1 ExportCitationPageSteps_1 FullTextPageSteps_1 OtherActionsSectionSteps_1

WebDriverSupport_2 AuthorSteps_2 CoverImageSteps_2 SummarySection_2Waiter_2 SectionPageSteps_2 CommonPageSteps_2

CommonPageSteps_3 WebElementSupport_3Assertions_3 WebDriverSupport_3Uris_3

WebElementSupport_4 WebDriverSupport_4Uris_4 TripleEquals_4 OnHost_4

OnHost_5 TripleEqualsSupport_5 MachineNames_5

MachineNames_6

Imagine many more circle here

So, what’s next?

Today
• We’ve delivered successfully using Scala

• Don’t think we’re more productive (pure gut feeling, though)

• We try to stick to the good parts (conventions, functional programming, pattern matching, etc.)

• Complexity, slow compilation and lack of tool support are real problems

The future
• No urgency to move away from Scala or re-write existing systems

• Java 8 is an alternative

• Smaller teams and apps will probably lead to more polyglotism (and less Scala)

Thanks

@patforna
patric.fornasier@springer.com

http://joinit.springer.com

mailto:patric.fornasier@springer.com
http://joinit.springer.com

