ScalawPractice

3 yeavs later...

@patforna
patric.fornasier@springer.com

mailto:patric.fornasier@springer.com

Context

@ Springer

(Software || 10t yeors |
Evngineer [ExTW]

(Pre’ﬁy Lavge)

[Academic |
Poblisher

(SP‘(.\V\ae‘(] (S’fro’reg'\cq
Spr'maevj o Co- Sourc.ec\
(Link (oo “] [Leom

Years ago
B Covw’fev\’fj [SPT\V\aer]
Del Clokol .
elivey [oba 1 [Sao\ cﬁ - o

() TD XML] Platform NoSq 1

Q9.9
92 Mio Availability
p th

ageViews / Mon

(Po’f]

(Technical |

Principal

Revenve

Fﬁ A Ow\'me]
Revenue [‘. TO*Oq

(9 Mio 'ﬁems]

LAk 157 ege s (Om

@ Springer

Journal of
Materials Schence

Optical studies of electrodeposited
ZnCuTe ternary nanowire arrays

Abstract

Optical studies of
clectrodeposited ZnCuTe
lernary nanowire arrays

. AN s b

(1) Comrtond #OF 005 v

S Yew AMiow

Timeline

Inception Start

RD
Live

Link
Cycling Live

\J/ \/ development \l/ \/ =1 \l/

04/11 05/12 09/1 2§

Bookfair
Release

04/12

P\

User migration,
enhancements

Product -> platform
Re-joined Paying back tech debt

S
B

Smart Enhancements
Books

Live

Today

Looking back: why scala?

+Increase productivity
-+ Be more attractive employer

- Team decision

Looking back: good vs bad

Good Bad

+ Functional programming - Tool support

- Terse syntax - Compilation times

+ JVM ecosystem -+ Language complexity #moreRope

- Gentle learning curve
- DSL friendly syntax

- Motivated team

Fast-forward

Fast-forward (Aug 2013)

-+ 2.5 years into project

- 1.5 years of weekly live releases

- 100k LOC

- >10k commits

- >90 committers

+ Poor feedback loops ¥

+ Lots of accidental complexity¥

* not all related to Scala - to be fair

Tre n d (2 years)

LOC

July October 2012 Aprii July October 2013 Aprii July October

Tre n d (2 years)

400

Seconds

350-

300-

250-

build time

150+

1:34 min src¢/main

100- ,
- 0:44 min src/test

50- - 8:18 min total

July October 2012 Aprii July October 2013 Aprii July October

What did we do?

What did we do

- Reduced build time
+ Improved feedback loops

+ Reduced accidental complexity

Build time

Reduced size of codebase (broke off vertical slices, pulled out APIs, pulled out libraries,
removed unused features, removed low-value tests, etc.)

Reduced usage of certain language features (esp. traits and implicits)

rend (Dec 2013)

400-

Seconds

350-

300-

250-

150+

LOC
100-

50-

04 1 I I 1 I 1 I 1 | I
July October 2012 April July October 2013 April July October

Trend oeczors oo
400

Seconds

350-

300+

250-

build time '

150-
traits

LOC
100+

50-

0J I I I I I 1 I 1 I I
July October 2012 April July October 2013 April July October

V4

The problem with traits

- Will re-compile on every class the trait is mixed in

- Slows down dev-build cycle

- Will result in byte code bloat

- Will compile *a lot* slower

For faster compile times:

» Use pure traits

» Use old-school composition for code re-use

* Use pure functions via imports (e.g. import Foo._)

 |[f unavoidable, use inheritance for code re-use

Build time

- 1:34 min src¢/main - 0:24 min src/main
. 6:44 min src/test / . 3:11 min src/test

- 8:18 min total - 3:35 min total

25

& 3

.
o

Stage Duration (mins)

Build tim

e (on Cl server)

Incremental compilation on Cl

Only one dedicated

Physical build serve

Cl agent

'S

CPUs with higher clock speed

Click and drag to zoom the chart

-®- Failed -+ Passed

7,245 7,250

——

7,255 7,260 7,265 7270
Pipeline Counter

7,275

o]

Complexity

Complexity

- There's still a lot of code in our codebase that is hard to read

It seems to be very easy to shoot yourself in the foot with Scala

Scala *is* complex (and that's why scalac will never be as fast as javac)

Invariant/covariant/contravariant types (T, +T and -T)

Refined types (new Foo {...})
Structural types (x: {def y: Int})
Path dependant types (a.B)
Specialized types (@specialized)
Self types (this =>)

Projection types (A#B)

Existential types (M[_])

Type bounds (<:, >:)

Type constraints (=:=, <:< and <%<)

Type members (type T)

Type aliases (type T = Int)

Type classes ((implicit ...))

View bounds (<%)

Higher kinded types (* => *)

F-Bounded type polymorphism (M[T <: M[T]])

http://nurkiewicz.github.io/talks/2014/scalar/#/16

http://nurkiewicz.github.io/talks/2014/scalar/#/16

Not opinionated

Many ways to do the same thing

Coding conventions help, but only so much

def foo() = "foo" list.foreach { x => println(x) }
def bar = "bar" list.foreach (x => println(x))
list.foreach { println(_) }
foo list.foreach (println(_))
foo() list foreach { x => println(x) }
bar list foreach (x => println(x))
bar() // won't compile list foreach { println() }
list foreach (println(l))
def baz(x: String) = x 1f (foo) "x" else "y"
“x”.charAt(0)
“x” charAt(@) // won't compile foo match {
“x”.charAt 0 // won't compile Chce tpUa = Y
“x” charAt 0 cose . Wy
baz("x") 1
baz “x" // won't compile

* For example: http://twitter.github.io/effectivescala/

http://twitter.github.io/effectivescala/

Surprises

List(l, 2, 3).toSet
scala.collection.immutable.Set[Int] = Set(1l, 2, 3)

List(l, 2, 3).toSet()

Boolean = false

http://dan.bodar.com/2013/12/04/wat-scala/

http://dan.bodar.com/2013/12/04/wat-scala/

Implicits

-+ Can make it very hard to read code
- Tool support is very bad
Impacts compilation time

- Surprising behaviour (esp. when used with overloaded methods or optional params)

Tooling

Tool support is still very basic

Makes it hard to continuously refactor (which means people are less likely to do it)

def handle(response: HttpResponse, request: HttpRequest)

no luck with “change signature”
refactoring support

Trait entanglements

Makes it difficult to reason about behaviour

trait A { class C extends A with B
def foo = "a" new C().foo
} Ilbll
trait B extends A {
override def foo = "b" class D extends B with A
1 new D().foo

Ilbll

ArticlePageSteps

CoverlmageSteps AuthorSteps SectionPageSteps

SummarySection

CommonPageSteps

TripleEquals

WebElementSupport

WebDriverSupport

TripleEqualsSupport

Trait entanglements g,

ArticlePageSteps_0

AuthorSteps_1 CoverlmageSteps_1

SummarySection_1 SectionPageSteps_1 CommonPageSteps_1

CommonPageSteps_2 Assertions_2 WebElementSupport_2

WebElementSupport_3 TripleEquals_3

TripleEqualsSupport_4 MachineNames_4

MachineNames_5

Trait entanglements

ArticlePageTests_0

ArticlePageSteps_1 AboutSectionSteps_1 SearchResultsPageSteps_1 ArticleTestFixture_1 JavascriptSupport_1

bstractSteps_1 GoogleAnalyticsSteps_1 FakeEntitlementSteps_1 ExportCitationPageSteps_1 FullTextPageSteps_1 OtherActionsSectionSteps_1

C ageSteps_2

WebDriverSupport_3

WebDriverSupport_2 AuthorSteps_2 CoverlmageSteps_2 SummarySection_2

CommonPageSteps_3 Assertions_3 WebElementSupport_3

WebElementSupport_4 WebDriverSupport_4 TripleEquals_4

TripleEqualsSupport_5 MachineNames_5

MachineNames_6

Imagine many more circle here

So, what's next?

Today

We've delivered successfully using Scala
Don't think we're more productive (pure gut feeling, though)
We try to stick to the good parts (conventions, functional programming, pattern matching, etc.)

Complexity, slow compilation and lack of tool support are real problems

The future

No urgency to move away from Scala or re-write existing systems

- Java 8 is an alternative

-+ Smaller teams and apps will probably lead to more polyglotism (and less Scala)

http://joinit.springer.com

@patforna
patric.fornasier@springer.com

mailto:patric.fornasier@springer.com
http://joinit.springer.com

